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Trapping reactions for mobile particles and a trap in the laboratory frame

A. D. Sanche?
Comisim Nacional de Energi Atamica, Centro Atmico Bariloche and Instituto Balseiro8400 San Carlos de Bariloche, Argentina
(Received 10 December 1998

We have used a stochastic model to obtain the exact spatial particle density profile for the trapping process
A+B—B in a one-dimensional lattice with a single trap, as seen from the laboratory frame. We obtain the
profile for either perfect or imperfect reactions wh&mparticles are immobile, but only for perfect absorption
in the general case where both particles are mobile with different diffusivities. This profile is found to be
similar to that seen from the reference system attached to the trap, the most noticeable difference being near the
origin. [S1063-651X99)08505-0

PACS numbegs): 82.20—w, 05.40—a, 02.50-r

I. INTRODUCTION bution of particles in the laboratory reference frame. The

organization of the paper is as follows. The model is pre-

The dynamics of elementary diffusion controlled reac-Sented and_we _Write the quation for our partiCL!Iar case. The

tions has been extensively studigd, the main objective of exact solution is _obtamed in thg Laplace—Fo_uner space for

such studies being the finding of theoretical models that deSither perfect or imperfect reactions and arbitrary values of
scribe correctly different chemical reactions. With the aim ofth€ diffusion constant®, andDg. When either of the dif-

obtaining a description of such kinds of phenomena includ-fus'.v't'istIS zero we Wrt'ti" thel;(tx,t) 'B.IEPe.SFt)ace't'T? do-
ing the probabilistic character of the reaction process, mog1ain. Later we presen herbitrary diffusivitieg solution

els, and techniques of analysis coming from the theory o]m.(x,t) but for perfect reactions. Finally we draw our conclu-

nuclear reactor§2,3] have been adapted to model these re_zlons.l\;v hclik.a some deta(;l's about the obtentiomngk,t) are
actions[4,5]. This framework turns out to be very adequate escribed In an appendix.
to describe different situations, making it possible to obtain
results not only in the asymptotic, but also in the intermedi-
ate and short time regimes. The results yield excellent agree-
ment with simulationg4-11], particularly when the model The model considers two species of particksand B,
equation can be exactly solved. The reason is that the equheth mobile and independent, and having a given reaction
tion is the continuous limit of the master equation that de{probability when they meet. Here we will study only a one-
scribes the simulations exactly. dimensional trapping reaction in a system of diffuskgar-

The trapping reactiod+B— B with a single trap and a ticles uniformly distributed and a single tr&that also per-
uniform initial density of particles in a one-dimensional lat- forms a diffusive motion.
tice is one of the simplest cases describing a certain kind of The model equation for the evolution fbi(x,t), the den-
chemical reactions. However, there are some questions stfity of theA particles, for a given realization e{t), the trap
open. A mathematically complex one is to find the statisticdr@ectory, is the following:
of the nearest-neighbor distance. This was completely solved
only for the particular cases of immobiRparticles[12—17
and immobileA particles[18,19. The general case with both
species mobile is still opefi9,20. In addition to that, the
density profile, as seen from the trap frame was recentlyvherey is a constant measuring the reaction probability (
solved in Refs[19,21]. In addition, in Ref[21] the density —< for perfect reactions In general we are interested in
profile as seen from the laboratory coordinate system was(x,t)=(N(x,t)), the density averaged over realizations of
discussed, its scaling properties obtained, and an analytica(t).
expression was given for the case when the trap and particles The solution for the initial conditiom(x,0)=n, and
have the same diffusivity. €(0)=0 can be writter{3,4] in the following form:

In the present work we analyze the density profile when
both species are mobile, within the framework of the sto-
chastic model presented in R¢&]. We will show that it is
possible to obtain the exact expressiomgxk,t), the distri-

Il. PARTICLE DISTRIBUTION FROM
THE LABORATORY FRAME

2
iN(x,t) = DAa—N(x,t) —yo(x—e(t))N(x,t), (1)
at x>

n(x,t)=n0—yf0tdt' f:cdx'G(x,t|x’,t’)A(x’,t’), (2

where the absorption functiad(x,t) satisfies the following
convolution equation:

t o]
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Here G(x,t|x’,t") andW(x,t|x’,t") are the particle and trap propagator respectively. The use of a diffusive form for both
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propagators allows us to write the Laplace-Fourier transform of the density given by

n(w,s) _ 276(w) B y @
No s (s+ D w?)(s+Dgw?)[ 1+ (s+Dw?) " 2y/(2D)]’
[
where n(w,t) o s(w)— 4 1

= W —

D=D+Dg, ®) o Jm (Dg—Dp)
75w2t
BZDADB: DaDg . ©) [DgG(Dgytw/\D)

D Da+Dg

Note that by settingv=0 in the second term of E@4), the
total number of absorbed particles can be obtained. The r
sulting expression coincides with previous calculations per
formed on the trap framgl9,21].

Performing the inverse Laplace-Fourier transform of Eq.

(4) is a difficult task. However, the expression simplifies

(?NhereG(x) [oexpt?—x?)dt is the Dawson’s integrdl22].

The final result(see the Appendixexpressed in the dimen-
sionless variableg=Dg /D, and {=x/4Dgt is

1

considerably for two particular case®,,=0 and Dg=0,
both having the same functional form. Taking the inverse
transform we obtain the following expression:

N(8,&)=1+— ——[SF (5,8 —F(1/5,\/88€)], (10)

(51

13
n(xvt) — erf( |X| +37\X\/(2DA B)+72t/(4DA B) F(é,g) = f_ erf( \/Ex)exq_xz)dxy (11)
nO \/4DA,Bt
M i where we denot@(x,t)/ny expressed ind and ¢ variables
X erfg +y\/ . (7) by n(4,&). From Eq.(10) the limits 5—1 (D,=Dg) and
V4D gt 4Dag £—0 (x=0) that were presented in R¢21] can be recov-

ered (see the Appendix In addition we can see that the

The fixed trap case is knowd] but here we obtain the case density is an analytic function af over the whole real axis,
of immobile A particles. For a perfect absorption reaction theexcept for6=0 or §—c which were treated above, where
second term in Eq(7) vanishes and the density =0 is  there is a jump in its slope &=0. Note that the density is
null. This fact has different reasons in each case: while fostill analytic for 5=1 [Eqg. (A13)]. The general aspect of
DB 0 the tl’ap |S at the Or|g|n in a” the real|zat|0ns When n(5 g) |S Shown in F|g 2. The curves were Computed from
D ,=0 the particles are immobile and they cannot migrate to
fill the depletion left by the trap at=0. The last remark is — 7T T
about the(in principle unexpectedfact that in the case of
fixed A particles the density, as seen from the laboratory
frame, is exactly the same as the one seen from the tra
frame. This equality is only satisfied whéh,=0 (besides
the Dg=0 case where it is trivially satisfiedWe illustrate
the indicated equality in Fig. 1. The agreement between_
simulations and the theoretical expression is apparent. AlE @
though simulation for different parameters can be included i |na>
the same graph using the dimensionless variakle® gt
and y+/t/Dg, we usex andt to stress the equality between
the densities from the two different frames.

From Eq.(4) we take the limity—o in order to obtain
the mathematically simpler perfect reaction expression, re-
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sulting in 05 — T T T
-30 -20 -10 0 10 20 30
n(w,s) 278(w) 2D Vs+Dw? ® X
Ny S (s+ DAWZ)(S+ DBWZ) . FIG. 1. Simulation for the density & particles in the reference

frame of the trap(circles and from the laboratory coordinate sys-
tem (squares (in arbitrary unit3. The parameters ale=480, Dg
=1,y=0.1t=100. The solid line is the theoretical value corre-
sponding to both densities from E().

Taking the inverse Laplace transform of Eg) we obtain
[24]
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FIG. 2. Density of particles from E¢A4) in adimensional vari- FIG. 3. Simulations for the particles densigots and theoret-

ables. The different curves correspond de== (solid ling), & ical value from Eq.(A3) (in arbitrary unit3. The parameters are

=100 (dashed ling 6=5 (dotted lind, 5=1 (dashed-dotted line ~ L=100,D,=0.5, Dg=>5, t=100, and perfect absorption.

and 6=0.5 (dashed-dotted-dotted linerhe inset shows the density

as seen from the laboratory frantgolid line) and from the trap  For arbitraryDg/D, the form of the solution was shown

frame (dashed lingfor 6=5. (Fig. 2. This can be contrasted with the known expression
for the density in the trap frame; the result being that both

Eq. (A4) which being equivalent to Eq10) is more conve- expres~sions are similar. The largest difference is gea0,
nient for numerical evaluation. In the inset we comparewheren(d,£) is zero and has a discontinuity in its derivative

n(s,£) with the density as seen from a coordinate systenwhile n(s,&) has a finite value and is a smooth function.

attached to the tragn(s,£)=erf o/ (5+1)|£]] [19,21), We note that Eq(4), being an exact result, could be used
where we can see that both densities are very close exceft obtain the density(x,t) in the general case of an imper-
for values near the origin. Finally, in Fig. 3 we compare fect reaction, by numerically performing the inverse Laplace-

simulations withh( 8, £), where the good agreement is appar_Founer_transform. The S|mulat|on§ are in exc_ellent agree-
ent. ment with the model. As was mentioned in the introduction,

The simulations were performed on a lattice Lokites this is an expected result since the model has been solved

with periodic boundary conditions. We have used the sam&*actly-

algorithm described in Rejl9_]. All results shovv_eq_are the' ACKNOWLEDGMENTS
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recently introduced for the description of diffusion limited

reactions allows us to calculate the exact expression of APPENDIX

n(x,t), the distribution of particle_s in the Iaborator_y frame, 1. Calculation of the inverse transform

for perfect reactions. As noted in Rg21] the profile for )

imperfect trapping approaches that for perfect reactiorts as e expand Eq(9) using

—oo, The solution can be expressed either as a series of ~ 2j

Hermite polynomial$Eq. (A4)] or through a definite integral G(x)=xexp —x?) X, 712 +1) (A1)

[Eqg. (10)]. While the series is appropriate for numerical j=o (el

evaluations due to its fast convergence, the integral is adynq after taking the inverse Fourier transform we obtain

equate for recovering the limit® ,=Dg and x=0, previ-

ously reported in Ref.21]. n(x,t) 2 1 1

The e_xpre:.ssion_ obtained far(x,t) satisfie;_the scalin_g n—ozl_ ;m\/_ﬁ
symmetries given in Ref21] and has an additional one: its

invariance by exchange of diffusivities, i.eD,—Dg,Dg “ (D2t\ (=1)i . 2
. . . . 3/2 Bt (-1 2j X
— Dy or in the scaling variable§— 1/8, £— /5&. This sym- x| Dg Z D —j 2]+ 1) acexp — 2D
metry is still valid for trap orA particles fixed and also for 1=0 | B
imperfect reactions, as we can see from E). We have o 2000 ()i 2
- ; ! 3 Dat)’ (—1) 2i X
noted that in the casB,=0 the resulting density has the —Dxr~, o W&X’ex BT
same expression in a reference system attached to the trap =0 12j+1) At

[n(5,&)] and in the laboratory coordinated systen{ s, &)]. (A2)
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Applying the Rodrigues formulf22] now we finally obtain Some particular values of the functiér(4,£) are
n(x,t) 1 2 1 1
"ng ~ w(Dg—Dp) D
o~ mTBAD F(16)- @[erfz(a—l], (A7)
o (De| (-1)
3/2,—x2/(4Dgt) -B
x| DgleePen 2, (40) 2j+1)
1
X , F(8,0)= —arctari1/y/8) — ﬁ (A8)
Hyi| —— _Di/2e—x /(4D pt) \/; 2
"\ V4Dgt
o (DA} (-1) X F(8,%)=0, (A9)
X —| —= H,; A3
,Zo (4D j12j+1) 2\ JaDt (43)
or in dimensionless variables d F(5.0) 1 o(—287) (A10)
-3 16)6=1=— ——EXQA — )
fnpo1 2 L 1 99 4w
n s e —_——— ——
7 (6-1) (5+1
» , , J
s\ (-1 —F(8,8) =erf(\/6¢)exp(— £2) (A11)
x| %% ¢ ~H i d ’ '
2|5 2z A .
e [ 1) (=) : , :
—e > ,sz(@g) , The integral defined for EA8) can be found in Ref23].
Folo+1) ji2j+1)2! Using this equation and after some algebra the density in
(A4) =01is
where H;(x) is the Hermite polynomial of degree This
series is adequate for evaluating the density profile numeri- - 1 105+1 6—1
cally due to its rapid convergence. n(6,0)=5——s—7arcta 273 (A12)

2. Series sum andF function

We expand the erf(5x) in a Hermite polynomial series while from Eq. (A9) n(5,)=1. The I'Hopital's rule ap-
i+1/2 plied to Eq.(10) yields

Haj 4 1(x),
(A5)

that after multiplying by the Gaussian function and integrat-

S (! 8
s |5

=0 j1(2j+1)2%

erf(\/ox) = Ji_
a

. 2 a &9
n(L,é&)=1+ \/—; F(1,§)+2(9—5F(5,§)|5:1— > a—gF(l,E)

ing gives
3 :E+£erf2(§)_£exq_2§2)
Fo.6)= | erf(/aexp—x?)ax 232 -
1
[ — —¢exp — £erf(¢), (A13)
= — mexq_éﬁ) \/;g F( g) (g)

j
Hy(§). (A6)  the explicit expression for thB ,=Dg case.

oo

y (1) (
=0 j1(2j+1)221\1+6
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