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Trapping reactions for mobile particles and a trap in the laboratory frame

A. D. Sánchez*
Comisión Nacional de Energı´a Atómica, Centro Ato´mico Bariloche and Instituto Balseiro,† 8400 San Carlos de Bariloche, Argentina

~Received 10 December 1998!

We have used a stochastic model to obtain the exact spatial particle density profile for the trapping process
A1B→B in a one-dimensional lattice with a single trap, as seen from the laboratory frame. We obtain the
profile for either perfect or imperfect reactions whenA particles are immobile, but only for perfect absorption
in the general case where both particles are mobile with different diffusivities. This profile is found to be
similar to that seen from the reference system attached to the trap, the most noticeable difference being near the
origin. @S1063-651X~99!08505-0#

PACS number~s!: 82.20.2w, 05.40.2a, 02.50.2r
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I. INTRODUCTION

The dynamics of elementary diffusion controlled rea
tions has been extensively studied@1#, the main objective of
such studies being the finding of theoretical models that
scribe correctly different chemical reactions. With the aim
obtaining a description of such kinds of phenomena incl
ing the probabilistic character of the reaction process, m
els, and techniques of analysis coming from the theory
nuclear reactors@2,3# have been adapted to model these
actions@4,5#. This framework turns out to be very adequa
to describe different situations, making it possible to obt
results not only in the asymptotic, but also in the interme
ate and short time regimes. The results yield excellent ag
ment with simulations@4–11#, particularly when the mode
equation can be exactly solved. The reason is that the e
tion is the continuous limit of the master equation that d
scribes the simulations exactly.

The trapping reactionA1B→B with a single trap and a
uniform initial density of particles in a one-dimensional la
tice is one of the simplest cases describing a certain kin
chemical reactions. However, there are some questions
open. A mathematically complex one is to find the statist
of the nearest-neighbor distance. This was completely so
only for the particular cases of immobileB particles@12–17#
and immobileA particles@18,19#. The general case with bot
species mobile is still open@19,20#. In addition to that, the
density profile, as seen from the trap frame was rece
solved in Refs.@19,21#. In addition, in Ref.@21# the density
profile as seen from the laboratory coordinate system
discussed, its scaling properties obtained, and an analy
expression was given for the case when the trap and part
have the same diffusivity.

In the present work we analyze the density profile wh
both species are mobile, within the framework of the s
chastic model presented in Ref.@4#. We will show that it is
possible to obtain the exact expression ofn(x,t), the distri-
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bution of particles in the laboratory reference frame. T
organization of the paper is as follows. The model is p
sented and we write the equation for our particular case.
exact solution is obtained in the Laplace-Fourier space
either perfect or imperfect reactions and arbitrary values
the diffusion constantsDA andDB . When either of the dif-
fusivities is zero we write then(x,t) in the space-time do-
main. Later we present the~arbitrary diffusivities! solution
n(x,t) but for perfect reactions. Finally we draw our concl
sions while some details about the obtention ofn(x,t) are
described in an appendix.

II. PARTICLE DISTRIBUTION FROM
THE LABORATORY FRAME

The model considers two species of particlesA and B,
both mobile and independent, and having a given reac
probability when they meet. Here we will study only a on
dimensional trapping reaction in a system of diffusingA par-
ticles uniformly distributed and a single trapB that also per-
forms a diffusive motion.

The model equation for the evolution forN(x,t), the den-
sity of theA particles, for a given realization ofe(t), the trap
trajectory, is the following:

]

]t
N~x,t !5DA

]2

]x2
N~x,t !2gd„x2e~ t !…N~x,t !, ~1!

whereg is a constant measuring the reaction probabilityg
→` for perfect reactions!. In general we are interested i
n(x,t)5^N(x,t)&, the density averaged over realizations
e(t).

The solution for the initial conditionn(x,0)5n0 and
e(0)50 can be written@3,4# in the following form:

n~x,t !5n02gE
0

t

dt8E
2`

`

dx8G~x,tux8,t8!A~x8,t8!, ~2!

where the absorption functionA(x,t) satisfies the following
convolution equation:

A~x,t !5n0W~x,tu0,0!2gE
0

t

dt8E
2`

`

dx8G~x,tux8,t8!

3W~x,tux8,t8!A~x8,t8!. ~3!
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Here G(x,tux8,t8) and W(x,tux8,t8) are the particle and trap propagator respectively. The use of a diffusive form for
propagators allows us to write the Laplace-Fourier transform of the density given by

n~w,s!

n0
5

2pd~w!

s
2

g

~s1DAw2!~s1DBw2!@11~s1D̃w2!21/2g/~2AD !#
, ~4!
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D5DA1DB , ~5!

D̃5
DADB

D
5

DADB

DA1DB
. ~6!

Note that by settingw50 in the second term of Eq.~4!, the
total number of absorbed particles can be obtained. The
sulting expression coincides with previous calculations p
formed on the trap frame@19,21#.

Performing the inverse Laplace-Fourier transform of E
~4! is a difficult task. However, the expression simplifi
considerably for two particular cases,DA50 and DB50,
both having the same functional form. Taking the inve
transform we obtain the following expression:

n~x,t !

n0
5erfS uxu

A4DA,Bt
D 1eguxu/~2DA,B!1g2t/~4DA,B!

3erfcS uxu

A4DA,Bt
1gA t

4DA,B
D . ~7!

The fixed trap case is known@4# but here we obtain the cas
of immobileA particles. For a perfect absorption reaction t
second term in Eq.~7! vanishes and the density atx50 is
null. This fact has different reasons in each case: while
DB50 the trap is at the origin in all the realizations, wh
DA50 the particles are immobile and they cannot migrate
fill the depletion left by the trap att50. The last remark is
about the~in principle unexpected! fact that in the case o
fixed A particles the density, as seen from the laborat
frame, is exactly the same as the one seen from the
frame. This equality is only satisfied whenDA50 ~besides
the DB50 case where it is trivially satisfied!. We illustrate
the indicated equality in Fig. 1. The agreement betwe
simulations and the theoretical expression is apparent.
though simulation for different parameters can be included
the same graph using the dimensionless variablesx/ADBt
and gAt/DB, we usex and t to stress the equality betwee
the densities from the two different frames.

From Eq.~4! we take the limitg→` in order to obtain
the mathematically simpler perfect reaction expression,
sulting in

n~w,s!

n0
5

2pd~w!

s
2

2ADAs1D̃w2

~s1DAw2!~s1DBw2!
. ~8!

Taking the inverse Laplace transform of Eq.~8! we obtain
@24#
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n~w,t !

n0
52pd~w!2

4

Ap

1

~DB2DA!

3
e2D̃w2t

w
@DBG~DBAtw/AD !

2DAG~DAAtw/AD !#, ~9!

whereG(x)5*0
xexp(t22x2)dt is the Dawson’s integral@22#.

The final result~see the Appendix! expressed in the dimen
sionless variablesd5DB /DA andj5x/A4DBt is

n̂~d,j!511
2

Ap

1

d21
@dF~d,j!2F~1/d,Adj!#, ~10!

F~d,j!5E
2`

j

erf~Adx!exp~2x2!dx, ~11!

where we denoten(x,t)/n0 expressed ind and j variables
by n̂(d,j). From Eq.~10! the limits d→1 (DA5DB) and
j→0 (x50) that were presented in Ref.@21# can be recov-
ered ~see the Appendix!. In addition we can see that th
density is an analytic function ofj over the whole real axis
except ford50 or d→` which were treated above, wher
there is a jump in its slope atj50. Note that the density is
still analytic for d51 @Eq. ~A13!#. The general aspect o
n̂(d,j) is shown in Fig. 2. The curves were computed fro

FIG. 1. Simulation for the density ofA particles in the reference
frame of the trap~circles! and from the laboratory coordinate sy
tem ~squares! ~in arbitrary units!. The parameters areL5480, DB

51,g50.1,t5100. The solid line is the theoretical value corr
sponding to both densities from Eq.~7!.
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Eq. ~A4! which being equivalent to Eq.~10! is more conve-
nient for numerical evaluation. In the inset we compa
n̂(d,j) with the density as seen from a coordinate syst
attached to the trap„ñ(d,j)5erf@Ad/(d11)uju# @19,21#…,
where we can see that both densities are very close ex
for values near the origin. Finally, in Fig. 3 we compa
simulations withn̂(d,j), where the good agreement is appa
ent.

The simulations were performed on a lattice ofL sites,
with periodic boundary conditions. We have used the sa
algorithm described in Ref.@19#. All results showed are the
average over 10 000 realizations and with an initial den
n051.

III. FINAL REMARKS

Summarizing, we have shown that the stochastic mo
recently introduced for the description of diffusion limite
reactions allows us to calculate the exact expression
n(x,t), the distribution of particles in the laboratory fram
for perfect reactions. As noted in Ref.@21# the profile for
imperfect trapping approaches that for perfect reactionst
→`. The solution can be expressed either as a serie
Hermite polynomials@Eq. ~A4!# or through a definite integra
@Eq. ~10!#. While the series is appropriate for numeric
evaluations due to its fast convergence, the integral is
equate for recovering the limitsDA5DB and x50, previ-
ously reported in Ref.@21#.

The expression obtained forn(x,t) satisfies the scaling
symmetries given in Ref.@21# and has an additional one: it
invariance by exchange of diffusivities, i.e.,DA→DB ,DB

→DA or in the scaling variablesd→1/d,j→Adj. This sym-
metry is still valid for trap orA particles fixed and also fo
imperfect reactions, as we can see from Eq.~4!. We have
noted that in the caseDA50 the resulting density has th
same expression in a reference system attached to the

@ n̂(d,j)# and in the laboratory coordinated system@ ñ(d,j)#.

FIG. 2. Density of particles from Eq.~A4! in adimensional vari-
ables. The different curves correspond tod5` ~solid line!, d
5100 ~dashed line!, d55 ~dotted line!, d51 ~dashed-dotted line!,
andd50.5 ~dashed-dotted-dotted line!. The inset shows the densit
as seen from the laboratory frame~solid line! and from the trap
frame ~dashed line! for d55.
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For arbitraryDB /DA the form of the solution was show
~Fig. 2!. This can be contrasted with the known express
for the density in the trap frame; the result being that b
expressions are similar. The largest difference is nearj50,
whereñ(d,j) is zero and has a discontinuity in its derivativ
while n̂(d,j) has a finite value and is a smooth function.

We note that Eq.~4!, being an exact result, could be use
to obtain the densityn(x,t) in the general case of an impe
fect reaction, by numerically performing the inverse Laplac
Fourier transform. The simulations are in excellent agr
ment with the model. As was mentioned in the introductio
this is an expected result since the model has been so
exactly.
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APPENDIX

1. Calculation of the inverse transform

We expand Eq.~9! using

G~x!5x exp~2x2!(
j 50

`
x2 j

j ! ~2 j 11!
~A1!

and after taking the inverse Fourier transform we obtain

n~x,t !

n0
512

2

p

1

~DB2DA!

1

AD

3FDB
3/2(

j 50

` S DB
2 t

D D j ~21! j

j ! ~2 j 11!
]x

2 jexpS 2
x2

4DBt D
2DA

3/2(
j 50

` S DA
2 t

D D j ~21! j

j ! ~2 j 11!
]x

2 jexpS 2
x2

4DAt D G .

~A2!

FIG. 3. Simulations for the particles density~dots! and theoret-
ical value from Eq.~A3! ~in arbitrary units!. The parameters are
L5100, DA50.5, DB55, t5100, and perfect absorption.
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Applying the Rodrigues formula@22# now we finally obtain

n~x,t !

n0
512

2

p

1

~DB2DA!

1

AD

3FDB
3/2e2x2/~4DBt !(

j 50

` S DB

4D D j ~21! j

j ! ~2 j 11!

3H2 j S x

A4DBt
D 2DA

3/2e2x2/~4DAt !

3(
j 50

` S DA

4D D j ~21! j

j ! ~2 j 11!
H2 j S x

A4DAt
D G ~A3!

or in dimensionless variables

n̂~d,j!512
2

p

1

~d21!

1

Ad11

3Fd3/2e2j2

(
j 50

` S d

d11D j ~21! j

j ! ~2 j 11!2 j
H2 j~j!

2e2dj2

(
j 50

` S 1

d11D j ~21! j

j ! ~2 j 11!2 j
H2 j~Adj!G ,

~A4!

where Hi(x) is the Hermite polynomial of degreei. This
series is adequate for evaluating the density profile num
cally due to its rapid convergence.

2. Series sum andF function

We expand the erf(Adx) in a Hermite polynomial series

erf~Adx!5
1

Ap
(
j 50

`
~21! j

j ! ~2 j 11!22 j S d

11d D j 11/2

H2 j 11~x!,

~A5!

that after multiplying by the Gaussian function and integr
ing gives

F~d,j!5E
2`

j

erf~Adx!exp~2x2!dx

52A d

p~11d!
exp~2j2!

3(
j 50

`
~21! j

j ! ~2 j 11!22 j S d

11d D j

H2 j~j!. ~A6!
n

ri-

-

Some particular values of the functionF(d,j) are

F~1,j!5
Ap

4
@erf2~j!21#, ~A7!

F~d,0!5
1

Ap
arctan~1/Ad!2

Ap

2
, ~A8!

F~d,`!50, ~A9!

]

]d
F~d,j!ud5152

1

4Ap
exp~22j2!, ~A10!

]

]j
F~d,j!5erf~Adj!exp~2j2!. ~A11!

The integral defined for Eq.~A8! can be found in Ref.@23#.
Using this equation and after some algebra the densityj
50 is

n̂~d,0!5
1

2
2

1

p

d11

d21
arctanS d21

2Ad
D , ~A12!

while from Eq. ~A9! n̂(d,`)51. The l’Hôpital’s rule ap-
plied to Eq.~10! yields

n̂~1,j!511
2

Ap
FF~1,j!12

]

]d
F~d,j!ud512

j

2

]

]j
F~1,j!G

5
1

2
1

1

2
erf2~j!2

1

p
exp~22j2!

2
1

Ap
j exp~2j2!erf~j!, ~A13!

the explicit expression for theDA5DB case.
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